skip to main content


Search for: All records

Creators/Authors contains: "Ghorbani, Fereshte"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report a photochemically induced, hydroxy-directed fluorination that addresses the prevailing challenge of high diastereoselectivity in this burgeoning field. Numerous simple and complex motifs showcase a spectrum of regio- and stereochemical outcomes based on the configuration of the hydroxy group. Notable examples include a long-sought switch in the selectivity of the refractory sclareolide core, an override of benzylic fluorination, and a rare case of 3,3′-difluorination. Furthermore, calculations illuminate a low barrier transition state for fluorination, supporting our notion that alcohols are engaged in coordinated reagent direction. A hydrogen bonding interaction between the innate hydroxy directing group and fluorine is also highlighted for several substrates with 19 F– 1 H HOESY experiments, calculations, and more. 
    more » « less
  2. Bis(bithienyl)-1,2-dicyanoethene (4TCE) is a photoswitch that operates via reversible E / Z photoisomerization following absorption of visible light. cis -to- trans photoisomerization of 4TCE requires excitation below 470 nm, is relatively inefficient (quantum yield < 5%) and occurs via the lowest-lying triplet. We present excitation-wavelength dependent (565–420 nm) transient absorption (TA) studies to probe the photophysics of cis -to- trans isomerization to identify sources of switching inefficiency. TA data reveals contributions from more than one switch conformer and relaxation cascades between multiple states. Fast (∼4 ps) and slow (∼40 ps) components of spectral dynamics observed at low excitation energies (>470 nm) are readily attributed to deactivation of two conformers; this assignment is supported by computed thermal populations and absorption strengths of two molecular geometries (P A and P B ) characterized by roughly parallel dipoles for the thiophenes on opposite sides of the ethene bond. Only the P B conformer is found to contribute to triplet population and the switching of cis -4TCE: high-energy excitation (<470 nm) of P B involves direct excitation to S 2 , relaxation from which prepares an ISC-active S 1 geometry (ISC QY 0.4–0.67, k ISC ∼ 1.6–2.6 × 10 −9 s −1 ) that is the gateway to triplet population and isomerization. We ascribe low cis -to- trans isomerization yield to excitation of the nonreactive P A conformer (75–85% loss) as well as loses along the P B S 2 → S 1 → T 1 cascade (10–20% loss). In contrast, electrocyclization is inhibited by the electronic character of the excited states, as well as a non-existent thermal population of a reactive “antiparallel” ring conformation. 
    more » « less